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In order for General Circulation Models (GCMs), one of our most important tools 
to predict future climate, to correctly describe the propagation of solar and thermal 
radiation through the cloudy atmosphere a realistic description of the vertical distribution 
of cloud amount is needed. Actually, one needs not only the cloud amounts at different 
levels of the atmosphere, but also how these cloud amounts are related, in other words, 
how they overlap. Currently GCMs make some idealized assumptions about cloud 
overlap, for example that contiguous cloud layers overlap maximally and non-contiguous 
cloud layers overlap in a random fashion. Since there are difficulties in obtaining the 
vertical profile of cloud amount from observations, the realism of the overlap 
assumptions made in GCMs has not been yet rigorously investigated. Recently however, 
cloud observations from a relatively new type of ground radar have been used to examine 
the vertical distribution of cloudiness. These observations suggest that the GCM overlap 
assumptions are dubious. 

Our study uses cloud fields from sophisticated models dedicated to simulate cloud 
formation, maintenance, and dissipation called “Cloud Resolving Models”. These models 
are generally considered capable of producing realistic three-dimensional representation 
of cloudiness. Using numerous cloud fields produced by such a CRM we show that the 
degree of overlap between cloud layers is a function of their separation distance, and is in 
general described by a combination of the maximum and random overlap assumption, 
with random overlap dominating as separation distances increase. We show that it is 
possible to parameterize this behavior in a way that can eventually be incorporated in 
GCMs. Our results seem to have a significant resemblance to the results from the radar 
observations despite the completely different nature of the datasets. Ths consistency is 
encouraging and will promote development of new radiative transfer codes that will 
estimate the radiation effects of multi-layer cloud fields more accurately. 

‘JCETKJniversity of Maryland Baltimore county 
Colorado State University, Fort Collins, CO 2 



Overlap Properties of Clouds Generated by a Cloud Resolving Model 

L. Oreopoulos192, and M. Khairoutdinov3 

Submitted to Geophysical Research Letters 

December 2002 

1. JCET- University of Maryland Baltimore County, Baltimore, MD 

2. Laboratov for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD 

3. Dept. of Atmospheric Sciences, Colorado State University, Fort Collins, CO 



Abstract 

The overlap properties of -850 snapshots of convective cloud fields generated by a Cloud 

Resolving Model are studied and compared with previously published results based on cloud 

radar observations. Total cloud fraction is overestimated by the random overlap assumption and 

underestimated by the maximum overlap assumption, as well as two standard implementations of 

the combined maximumhandom overlap assumption. When the overlap of two layers is 

examined as a function of vertical separation distance, the value of the parameter a measuring 

the relative weight of maximum ( ~ 1 )  and random (PO) overlap decreases in such a way that 

only layers less than 1 km apart can be considered maximally overlapped, while layers more than 

5 km apart are essentially randomly overlapped. The decrease of a with separation distance is 

best expressed by a power law; exponential behaviour is, however, still a good approximation for 

separation distances up to 5 km. 
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1. Introduction 

One of the main requirements for good performance of radiative transfer algorithms of Large 

Scale Models (LSMs) is input of accurate vertical distributions of cloud fraction (e.g., Barker et 

al., 1999a). This is, of course, not an easy requirement to meet, since processes relevant to cloud 

formation that determine cloud area at different levels of the atmosphere are often of subgrid 

nature and need to be parameterized. Although it is generally accepted that recent progress with 

prognostic cloud schemes has resulted in improvements in LSM cloudiness, it is still challenging 

to evaluate the realism of vertical cloud distributions. Moreover, even if input cloud profiles are 

realistic, it is still doubtful that current operational radiative transfer schemes can incorporate this 

information in a robust way. 

One of the most popular assumptions currently used in LSMs is that adjacent cloud layers 

overlap maximally while cloud layers separated by clear skies overlap randomly. This is based 

on a compilation of 15-level US Air Force 3D Nephanalysis data by Tian and Curry (1989). To 

evaluate the degree of cloud profile realism in LSMs, one needs, however, comparisons with 

more detailed observations. Unfortunately, there is no such global dataset available to this day. 

In the future, the space-based 95 GHz radar instrument CLOUDSAT, scheduled to be launched 

in 2004 will hopefully help in filling this observational gap. But until CLOUDSAT data start 

becoming available, the best observations of cloud overlap will be ground based and will be 

coming from millimeter cloud radar (MMCR) operating at few selected sites. 

Ground-based radar data have already been used for studies of cloud overlap. Hogan and 

Illingworth (2000) (hereafter HI2000) derived overlap statistics (discussed later) from radar 

observations in southern England for the period November 1998 - January 1999. Mace and 

Benson-Troth (2002) (hereafter MBT2002) performed similar analysis using a much more 
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extensive data set that included 103 months of MMCR observations at three (tropical, mid- 

latitude, and polar) sites of the Atmospheric Radiation Measurements (ARM) program and were 

thus able to examine seasonal cycles in overlap and differences among climate regimes. 

In this paper we use a different type of dataset to study overlap: cloud fields from a Cloud 

Resolving Model (0. Cloud fields from CRMs have recently become quite popular inputs 

for testing atmospheric radiative transfer algorithms (Oreopoulos and Barker, 1999; Barker et al., 

1999a; Barker et al., 2002; Scheirer and Macke, 2002; Di Giuseppe and Tompkins, 2002). The 

rationale for their use in this role, is that they are the most realistic 3D representation of cloud 

fields that is presently available. Furthermore, they provide instantaneous full 3-D “snapshots” of 

clouds with well-defined spatial scales, in contrast to cloud fields reconstructed from MMCR 

point observations that are, at best, 2D, and this only after having to invoke the frozen turbulence 

assumption (MBT2002). In this work, we proceed then with the assumption that the realism of 

CRM cloud fields justifies their use as a source of usehl statistical information on the vertical 

overlap of clouds. It should be pointed out, however, that our results should be considered 

representative of convective clouds only, and are specific to the vertical bin sue  used in our 

analysis (0.5 km), the horizontal (2 km) resolution, and the size of the domain (-500 km). 

2. The dataset 

A detailed description of the CRM used in this study is given by Khairoutdinov and Randall 

(2002). The convective cloud fields come from runs using the time varying forcing derived from 

the observations collected during intensive observation periods (IOPs) of ARM, GATE’, and 

TOGA-COARE2. The ARM forcing is from the Summer 1997 IOP over Oklahoma and 

‘ Global Atmospheric Research Program (GAM) Atlantic Tropical Experiment 
* Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment 
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Nebraska from 18 June to 16 July; the GATE Phase I11 forcing covers the period from 1 to 18 

September 1974; finally, the TOGA-COARE (hereafter, for brevity, “TOGA”) dataset 

corresponds to the time period from 18 December 1992 to 8 January 1993. For all three cases, 

the domain size is 512 km x 512 km with 2km horizontal grid size and variable vertical 

resolution: -100-200 m up to the first two kilometers, gradually increasing to 500 m at a height 

of - 6km. The number of fields produced from the runs with significant amount of clouds for 

statistical analysis is 193 for ARM, 160 for GATE, and 498 for TOGA and are “snapshots” 

saved at hourly intervals. For each model layer the cloud fraction is determined by counting the 

number of gridboxes with non-precipitating total water (liquid and ice) greater that 10’’ gKg. 

Figure 1 shows cloud fraction and liquid water content (LWC) profiles derived by ensemble- 

averaging individual cloud fields. GATE fields have larger cloud fractions than the ARM and 

TOGA fields, except for high altitudes where TOGA has slightly more clouds. TOGA has the 

highest LWC at low altitudes (< 4 km) where the cloud fractions are very low, and ARM the the 

highest above that altitude. Even though no layer of the GATE and TOGA dataset has ensemble- 

average cloud fraction above 0.5, the total cloud fraction (fraction of columns with at least one 

cloudy gridbox) as viewed from above, is much higher (mean values of “true” curve in Fig. 

2b,c), and frequently assumes values corresponding to overcast conditions. 

3. Overlap analysis 

The large number of cloud fields from the CRM runs gives us some assurance that meaningful 

statistics on the overlap characteristics of clouds can be obtained. As we go through the 

presentation of our results, we will be providing information on how to calculate cloud fractions 
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from the various overlap assumptions. We start immediately below with three classic overlap 

assumptions. 

Given two cloud layers, their combined cloud fraction, when only their individual cloud 

fractions C1 and C2 are known, can be calculated from one of the three standard overlap 

assumptions (e.g. MBT2002): 

which are, respectively, the cloud fractions corresponding to the maximum, minimum, and 

random overlap assumption. The true combined cloud fraction of two cloud layers most often 

does not agree with any of the cloud fractions derived from (1). HI2000 introduced a parameter a 

to quantify the degree of agreement between the combined true cloud fraction Ct, and that from 

the overlap assumptions: 

According to the above formulation, a = 0 corresponds to random overlap, a = 1 to maximum 

overlap, while negative values of a indicate cloud fractions larger than Grand that start 

approaching values of Cmin. 

Figure 2 shows the total cloud fraction for each cloud field. Five different estimates are 

shown. “True” is the actual total cloud fraction, as “observed”. It is estimated as the fraction of 
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the total number of columns that are cloudy. A column is considered cloudy if it contains one or 

more cloudy gridboxes. The “max” curve corresponds to the total cloud fraction using the 

maximum overlap assumption (generalization of eq. l a  for multiple cloud layers) and is simply 

equal to the maximum cloud fraction of the vertical profile. The “ran” curve corresponds to the 

total cloud fraction from the random overlap assumption and is derived from a generalization of 

eq. (1 c) for multiple (N) cloud layers: 

N c,,, =l-n(l-ci) 
i- 1 

(3) 

The “maxran blocks” curve is derived by combining the maximum and random overlap 

assumption in the following way: contiguous cloud layers form blocks. Whenever a clear layer is 

present a new cloud block is formed; the cloudy layers within a block overlap according to the 

maximum overlap assumption, while cloud blocks themselves overlap according to the random 

overlap assumption. Thus, eq. (3) is used with N as the number of cloud blocks and each Ci 

represents the maximum cloud fraction within the block. Finally, the curve “maxran GH’ is the 

total cloud fraction according to the combined maximumhandom overlap assumption as 

implemented by Geleyn and Hollingsworth (1 979): 

The Geleyn and Hollingsworth (1979) implementation of maximudrandom overlap differs from 

the “block” approach in that layers within a block are considered maximally overlapped only 



when there is no local cloud minimum in between. Thus, the Geleyn and Hollingsworth method 

generally results in a larger cloud fraction than the “block” method. 

For the CRM fields, the true total cloud fraction assumes values between those derived 

from the random and maximum overlap assumptions. In addition, neither of the two madran 

overlap assumptions is a particularly good fit. The “block” madran scheme gives values almost 

identical to the maximum overlap scheme for all three sets of runs. The reason is that in the vast 

majority of fields, clouds form a single block, Le., clouds are contiguous. For the GATE fields, 

eq. (4) performs better than the maximum overlap assumption, but still underestimates 

substantially the true cloud fraction. 

Figure 3 shows the values of a derived from eq. (2) with input for Cme, C,, and Crmd 

taken from the data used to draw the “true”, “max”, and “ran” curves in Fig. 2. Clearly, the ARM 

cloud fields exhibit much stronger resemblance to maximum overlap than the GATE and TOGA 

cloud fields. The cases where a approaches zero for GATE and TOGA corresponds to nearly 

overcast conditions. In general, a and Cme are well correlated for all three datasets with small 

values of a corresponding to large values of Cme and vice-versa. 

Figure 4 shows the combined cloud fraction of two cloudy layers as a function of their 

vertical separation distance shown in the ordinate. The true combined cloud cover is compared 

with combined cloud cover derived from the maximum, random, and minimum overlap 

assumptions. The vertical separation bin size is 500 m. This figure is similar to Fig. 3 of HI2000 

and the (a) panels of Fig. 3-5 in MBT2002. Note, however, that in contrast to their work, we do 

not distinguish between pairs of layers with and without cloud in the intervening layers. The 

reason is that in the vast majority of cases only one cloud block is present (recall the small 

difference between “rnax” and “maxran blocks” cloud fraction in Fig. 2), so that statistics for the 
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rare occurences of layers separated by clear skies are quite limited and applicable only to the 

case of large separation distances. As expected, the true combined cloud fraction of the pair lies 

between its counterparts for the random and maximum overlap assumption. For small separation 

distances (first two bins, < 1000 m) the two layers overlap in a manner resembling maximum 

overlap conditions, but very quickly the overlap takes values between those for maximum and 

random overlap. Conditions of almost purely random overlap prevail when the layers are 

separated by more than 5 km. For radiative transfer calculations, however, it would probably not 

be wise to attempt to incorporate overlap effects of clouds separated by large distances, unless, 

of course, only clear skies exist between the two distant layers. When some of the intervening 

layers are cloudy, radiative interactions are already so complex that the detailed overlap of two 

remote layers will at most times have minimal effect on the radiative fluxes. 

Figure 5 shows profiles of a derived from eq. (2) using pairs of cloud layers separated by a 

range of distances. There are two curves for each of the ARM, GATE, and TOGA cloud fields: 

one by inserting in eq. (2) the ensemble values of C,,, Cmax and Cmd shown in Fig. 4, and one 

by taking the ensemble average of a profiles derived for each individual cloud field. Both 

methods for estimating a profiles yield very similar results for ARM and GATE, but non- 

negligible differences above - 2 km for TOGA. As expected, a drops with separation distance, 

indicating that as cloud layers become more distant they acquire an increasingly stronger 

tendency for random overlap. 

Figure 6 shows least-square fits to the ensemble average a curves of Fig. 6. It is interesting 

that better fits over the entire range of separation distance Az are obtained with power law 

functions 
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a = C A Z - ~  

than exponential functions 

a = y exp(-/3Az) (5b) 

as in HI2000. The fitted values of c, b, as well as the correlation coefficient R for each of the 

three datasets is provided in Table 1. The least successful power law fit is for the TOGA dataset. 

When the fits are restricted to a maximum of 5 km separation distances, a for TOGA follows 

almost perfectly (R=0.996) an exponential drop; for the other two datasets exponential and power 

fits perform about equally well. We show the exponential fit curves for separation distances up to 

5 km in the bottom panel of Fig. 6, and the least square values for y, /3, and R in Table 2. 

Provided that fits of this type can be reproduced from other datasets, one can envision the 

introduction in an LSM of a completely generalized overlap scheme where the combined cloud 

fraction of any two layers is given by eq. (2) with a values provided as a function of separation 

distance from parameterizations such as eq. (5). A solar radiative transfer algorithm applying 

these ideas was presented by Bergman and Rasch (2002). 

4. Discussion and conclusions 

We have shown that the overlap properties of numerous convective cloud fields generated by a 

CRM show some consistency with previous analyses from ground-based millimeter radar data 

(HI2000; MBT2002). We reach this conclusion using the spatial cloud variability and without 

attempting to emulate MMCR-type cloud observations with the time series of our CRM 
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“snapshots” as in Barker et al. (1999b) because of the coarse temporal sampling (1 hour). We 

found that the total cloud fraction and the combined cloud fraction of any two layers separated 

by a certain distance assumes values between those corresponding to the commonly used 

maximum and random overlap assumptions. The value of the parameter a describing the degree 

to which cloud fraction agrees with one of the two idealized overlap assumptions is a smooth 

varying function of separation distance and can be fit with analytical functions. This may turn 

out to be very useful for parameterization purposes.. 

Overlap information such as this presented in the current study should continuously be 

extended with results for other cloud types and ultimately be incorporated in the radiative 

transfer schemes of LSMs or even stochastic multi-layer cloud generators. Efforrts have already 

begun in this direction (Bergman and Rasch 2002; Oreopoulos et al., 2002), despite the inherent 

difficulties in conveying the overlap information into the radiation algorithm in a meaningful 

way. Things become even more complex when attempting to simoultaneously account for cloud 

overlap, horizontal inhomogeneity, and vertical correlations of cloud water. Nevertheless, initial 

evidence suggests that even at their current stage of development these algorithms outperform 

current plane-parallel algorithms with standard overlap assumptions. 
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List of Tables 

GATE 

Table 1 

Least square fits and correlation coefficient for eq. (5a). 

78.3 -0.75 0.970 

TOGA 299.1 -0.93 0.906 
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Table 2 

Least square fits and correlation coefficient for eq. (5b). 
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List of figures 

Figure 1 Ensemble average profiles of cloud fraction and liquid water content for the simulated 

ARM, GATE and TOGA cloud fields used in this study. 

Figure 2 Total cloud fraction of each cloud field used in this study as estimated exactly from the 

number of cloudy gridboxes (“true”) and as calculated from layer cloud fractions using the 

random (“ran”), maximum (“max”) and two maximudrandom overlap assumptions ((‘maxran 

blocks” and “maxran GH’). See text for details. 

Figure 3 Alpha parameter values corresponding to total cloud fraction for each of the ARM, 

GATE, and TOGA cloud fields. 

Figure 4 Combined cloud fraction of pairs of layers separated vertically by distances shown in 

the ordinate as “observed” from the modeled fields (“true”), and as derived using the maximum 

(“rnax”), random (“ran”), and minimum (“min”) overlap assumptions. 

Figure 5 Profiles of alpha derived by either ensemble-averaging the alpha profiles of each 

individual cloud field (dotted curves) or by applying eq. (2) to the ensemble average of combined 

cloud fractions shown in Fig. 4 (solid curves). Thin black curves are for ARM, thick black 

curves for GATE and gray curves for TOGA. 

Figure 6 Ensemble average alpha profiles as a function of distance (black curves), as in Fig. 5 ,  

but with the axes swapped, power law least square fit curves (gray curves) up to separation 

distances of 15 km (top panel), and exponential fits up to separation distances of 5 km (bottom 

panel). 
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Figure 1 Ensemble average profiles of cloud fraction and liquid water content LWC for the 

simulated ARM, GATE and TOGA cloud fields used in this study. 
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Figure 2 Total cloud fraction of each cloud field used in this study as estimated exactly from the 

number of cloudy gridboxes (“true”) and as calculated from layer cloud fractions using the 

random (“ran”), maximum (“max”) and two maximudrandom overlap assumptions (“maxran 

blocks” and “maxran GH’). See text for details. 

16 



1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

cloud field index 

Figure 3 Alpha parameter values corresponding to total cloud fraction for each of the ARM, 

GATE, and TOGA cloud fields. 
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Figure 4 Combined cloud fraction of pairs of layers separated vertically by distances shown in 

the ordinate as “observed” from the modeled fields (“true”), and as derived using the maximum 

(“max”), random (“ran”), and minimum (“min”) overlap assumptions. 
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Figure 5 Profiles of alpha derived by either ensemble-averaging the alpha profiles of each 

individual cloud field (dotted curves) or by applying eq. (2) to the ensemble average of combined 

cloud fractions shown in Fig. 4 (solid curves). Thin black curves are for ARM, thick black 

curves for GATE and gray curves for TOGA. 
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Figure 6 Ensemble average alpha profiles as a function of distance (black curves), as in Fig. 5, 

but with the axes swapped, power law least square fit curves (gray curves) up to separation 

distances of 15 km (top panel), and exponential fits up to separation distances of 5 km (bottom 

pane 1). 
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